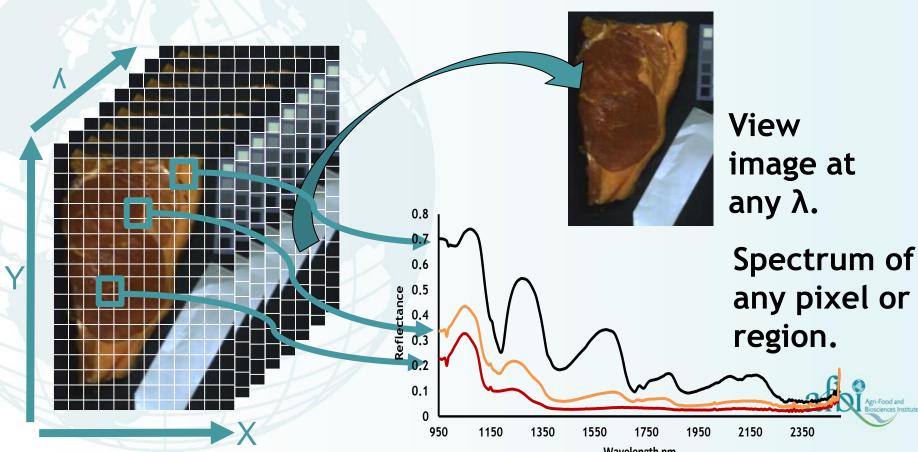


ALL-IRELAND MEAT SCIENCE CONFERENCE 2018. Hyperspectral Imaging for Meat Quality

Dr. David Farrell.

Hyperspectral Imaging for Meat Quality

- 1. What is Hyperspectral Imaging?
- 2. Hyperspectral Imaging & Meat Quality.
- 3. Hyperspectral Imaging at AFBI.
- 4. Next steps.


1. What is Hyperspectral Imaging?

- Technique that generates a spatial map of spectral variation.
- Equipment involves 2 cameras, 1 scanner and the creation a data cube:
 - VNIR : 400nm 900nm
 - SWIR: 900nm 2493nm
 - Scanner in push broom configuration.

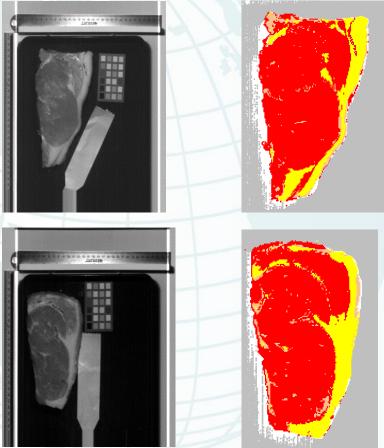
What is Hyperspectral Imaging?

What can we measure?

 Gross Components: Quantification of the area of components within a scanned image

 Chemical Composition: Quantification of non-visible components within a scanned image

2. Hyperspectral Imaging & Meat Quality


Variable	R ² / % Correctly classified	Reference
Colour L, a*, b*	0.88- 0.92	Wu et al. 2010
Water, Fat & Protein	0.89, 0.84, 0.86	ElMasry et al. 2013
рН	0.73, 0.86	ElMasry et al. 2013 Wu et al. 2010
Fatty Acids (individual)	0.68- 0.89	Kobayashi et al. 2010
Fatty Acids (groups)	0.87- 0.90	Kobayashi et al. 2010
Shear force classification	73- 93%	Naganathan 2015a & b Cluff et al. 2013
Shear force classification	96%	Naganathan 2008
Sensory attributes	0.21- 0.59	Prieto et al. 2009
		Agri-Food and Biosciences Institute *

3. Hyperspectral Imaging at AFBI

- 1. Measuring lean, fat and marbling using image software
- 2. Latest beef quality correlations
- 3. Predicting eating quality of chicken

Image Software: Lean, fat & Marbling

	Pixels	% Meat Area
Fat	2538	17.1
Marbling	834	5.6
Lean	11492	77.3

	Pixels	% Meat Area
Fat	2684	18.9
Marbling	885	6.2
Lean	10668	74.9

2

Latest Beef Correlations

 PLSR for colour, marbling (MSA), pHu, cooking loss and shear force (N = 104).

Predicted variable	%RSQc	%RSQv
Meat Colour L*	91	46
Meat Colour a*	99	58
Meat Colour b*	97	63
MSA marbling	83	17
pHu	99	55
% Cooking loss	99	36
WBSF	97	27

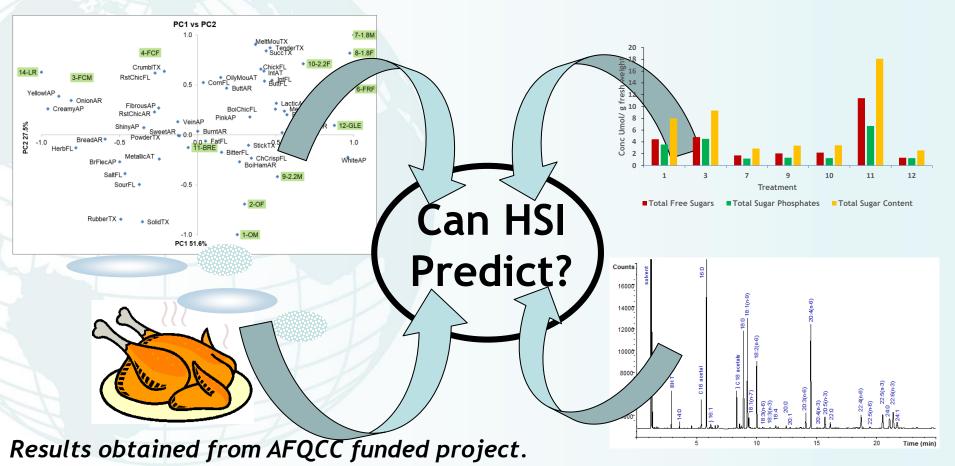
Results obtained from DAERA funded PhD project.

• DA: Identifying Dark Cutting Beef

Variable	% C	% V	Calibration (94%)			
pHu ¹	94	96			Count	
pHu ²	94	92	ed		≤5.9	
pHu1: cut off pH 5.9. pHu2: cut off pH 6.0		redicted	≤5.9	47		
			Pre	>5.9	0	

Validation (96%)

Count

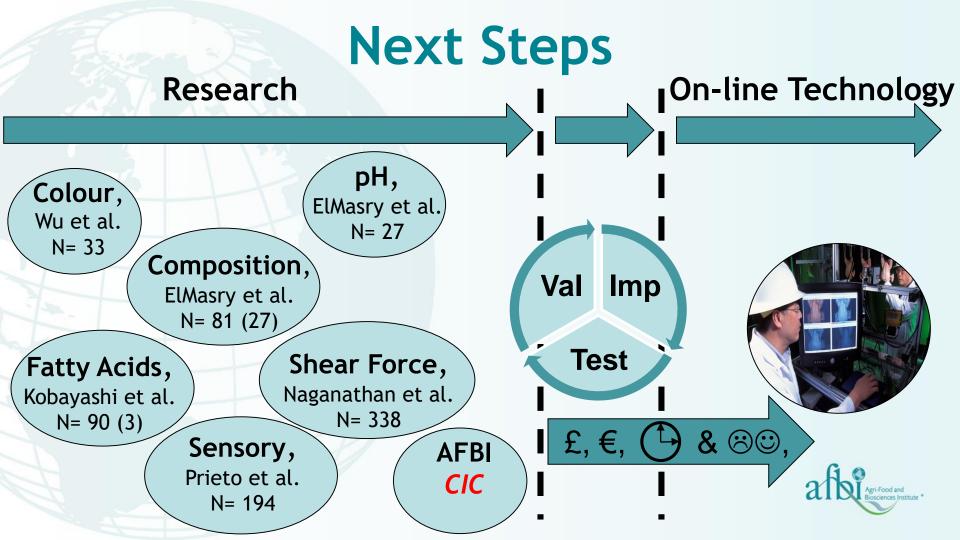


>5.9

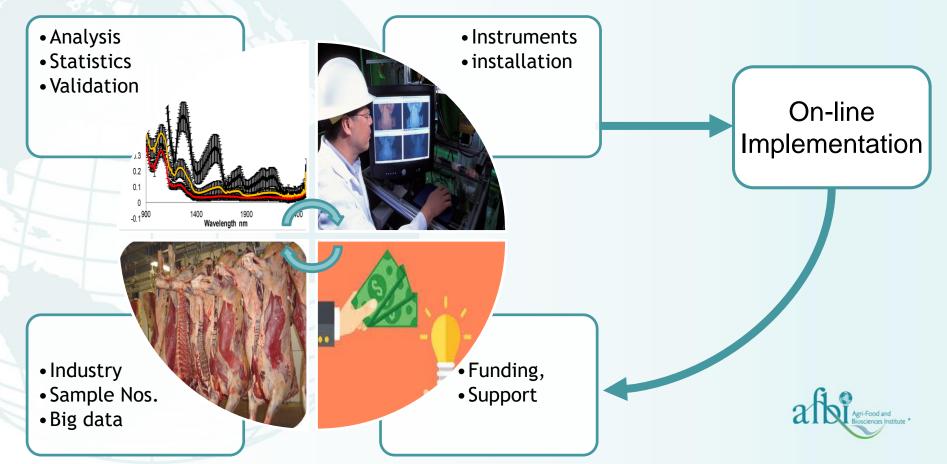
4

19

Predicting the EQ of Chicken


Predicting EQ of Chicken

Variable	%RSQ
Free Amino Acids	20- 65
Fatty Acids: Saturated MUFA PUFA N3 N6	89 73 81 84 81
рН	83
Ribonucleotides	60s
Sugars/ Sugar Phosphates	80-90
TBARS	88


Variable	%RSQ
Flavour - Boiled chicken	43
Flavour Intensity	43
Tenderness	56

Results obtained from AFQCC funded project.

What's Needed?

Acknowledgements

Conclusions

• HSI shows potential for on-line prediction/ measurement of meat quality.

Models described in literature are based on relatively small sample sizes.

 Larger sample sizes, more variation and greater model validation are required to achieve on-line meat quality assessment.

