

Beef Quality Measurement and Prediction

David Farrell and Linda Farmer Agri-Food and Biosciences Institute, Belfast, UK

www.afbini.gov.uk

Summary Points - Sustainable Beef Quality for Europe I.

SUSTAINABLE BEEF QUALITY FOR EUROPE

A Workshop for Industry & Scientists *Milan, October 2015*

Eating Quality

- Reduce inconsistency
- Methods to monitor eating quality
- Identify cost of unacceptable quality

Nutritional quality

Better knowledge of nutritional benefits

<u>Consumers</u>

- Greater communication with consumers (esp. nutrition)
- Greater understanding of consumers
- Halt the decline in consumption

Production

Greater efficiency at farm level

Farmer et al., Viandes et Produits Carnes, 2016

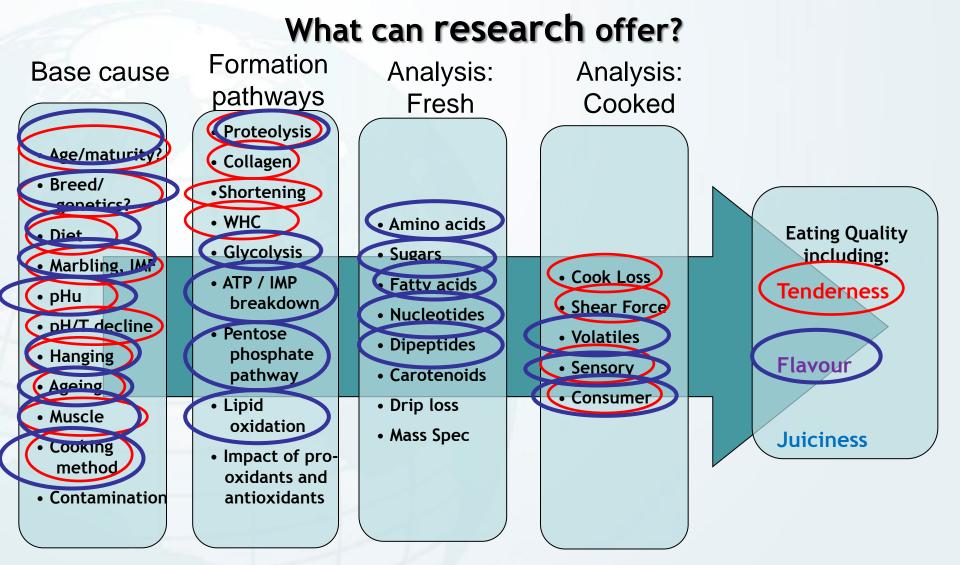
What does Industry want from Researchers?

"Unsatisfactory"

Inconsistency of beef eating quality.

European consumer studies on beef*:

- 20% grilled striploin
- 25% grilled rump
- 54% roast topside


Methods for Prediction of Quality.

Must be:

- Rapid (on-line)
- Robust
- Non-destructive
- Easy to use and
- Cost effective!

* Bonny, S. et al. 2015; Farmer et al., 2016

However, Established methods are:

- Destructive & Costly
- Not suitable for online measurement

Towards Beef Quality Prediction.

- 1. Beef Eating Quality systems:
- Main Factors of each system
- Comparison of quality systems

- 2. Rapid Methods of Prediction:
- Methods available
- How well do they work?

Beef eating quality systems

Summary of classifications

Grades	System			
	MLC	USDA	NZ QMark	MSA
Outside system	Ungraded	Ungraded	Ungraded	Ungraded / failed
Graded as unsatisfactory		Utility Commercial		Unsatisfactory
Graded as		Standard (x3)		3*
satisfactory	Blueprint	Select (x2)	QMark	4*
or good	"Blueprint plus" (~21d ageing)	Choice (x3) Prime (x3)		5*
Grade applied to:	whole carcase (selected premium cuts)	whole carcase (cuts not specified)	whole carcase (selected premium	each cut / ageing period / cooking method
	1		cuts)	Agri-Food and

Beef eating quality systems Main factors

MLC

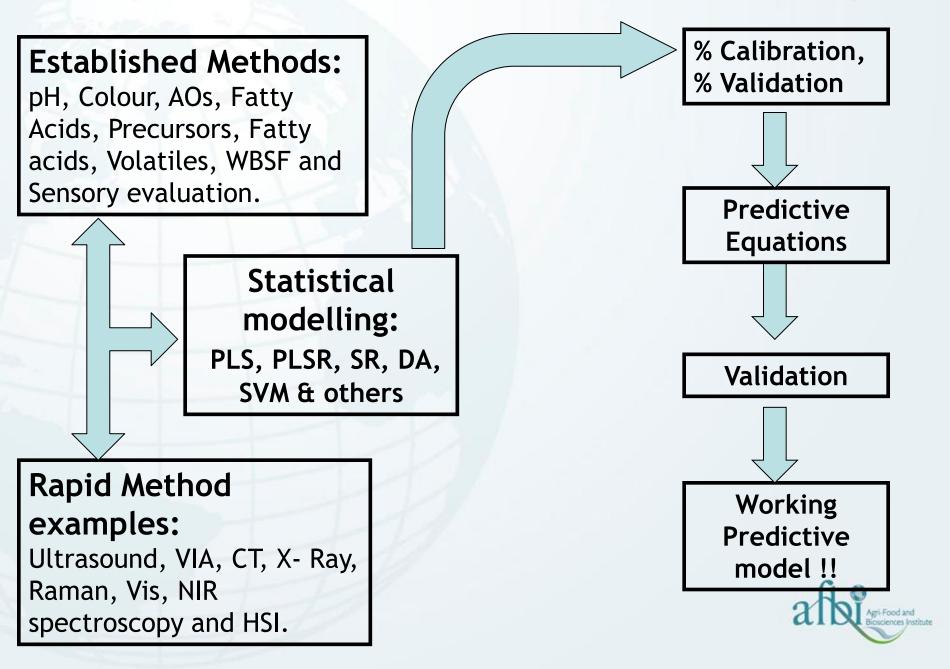
Age Maturity (teeth) Fat cover Fat class Hanging method Chill regime Meat and fat colour pHu EUROP Grade Ageing (Bulls)

USDA

- Maturity (oss.) Marbling Visible meat texture & colour
- Age (teeth) Transport Mixing Lairage pH/temp ES pHu Shear force

NZ QMark

MSA


Breed (Brahman) Maturity (oss.) Fat cover Marbling Transport Mixing& Lairage pH/temp. decline Meat & fat colour pHu Hanging method ES Ageing Cut/muscle Cooking method

Comparison of beef eating quality systems

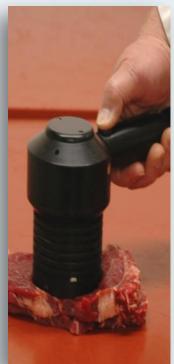
- None of the systems are perfect
 - Variability of "satisfactory graded" beef is reduced but not removed
- Best delivery of eating quality to consumers:
 - Best: Modification of MSA system
 - Possible: Modification of MLC system
- Best quantity of graded beef:
 - MSA gave best quantity of graded beef

Rapid Methods of Prediction – Basic concept.

Instrumental prediction (Literature 2010-2016)

- Moss et al., 2010
- Yancey et al., 2010
- ElMasry et al., 2012
- Roehe et al., 2013

Hyperspectral Imaging (HSI)/ Raman spectroscopy Visible & Near-Infrared spectroscopy (Vis-NIR)


Robotic pH, VIA, CT scanning, ultrasonic fat depth, Vis-NIR, Raman, HSI

"Scottish programme for "Integrated Management of Eating Quality"

• Font-i-Furnols et al., 2014 Computed Tomography (CT) scanning

HSI

- Qiao et al., 2015
 Visible Hyperspectral Imaging
- Peng & Dhakal 2015 Optical methods review
- Lee et al., 2015 Magnetic Resonance Imaging (MRI)

Instrumental prediction (Literature 2010-2016)

Composition

- Robotic pH robotics work well but pH sensory technology needs improvement
- VIA as good or better than manual grading for saleable meat and carcase fat
- CT Scanning very good for composition, but expensive. Reference method.
- **MRI** very good for IMF, but not an on-line procedure
- **HSI** prediction for IMF: $R^2 \sim 70\%$
- HSI variable prediction for fatty acid groups: R² ~ 50-70%
- **HSI** variable prediction of pH: R² ~ 23-73%

Moss et al., 2010; ElMasry et al., 2012; Roehe et al., 2013; Lee et al., 2015; Qiao et al., 2015

Instrumental prediction (Literature 2010-2016)

Eating Quality

- Vis-NIR Spectroscopy
 - Predicts Shear Force (SSF): $R^2 = 9\% 50\%$ (dep. d. post sl.)
 - Predicts tenderness: $R^2 = 7-46\%$ (dep. muscle)
 - HSI
 - Predicts Shear Force (SSF/WBSF): $R^2 = 20-83\%$ (dep. d. post sl. & muscle)
 - Predicts tenderness: $R^2 = 7-50\%$ (dep. muscle, lab, ?)
 - Predicts flavour: $R^2 = 32-50\%$ (dep. muscle, lab, ?)

Moss et al., 2010; ElMasry et al., 2012; Roehe et al., 2013; Qiao et al., 2015

Beef Quality Prediction – Recent Months

"Classifying of Nellore cattle on Normal and DFD...". Nubiato, Z., et al.

"HSI system to predict DFDcorrect classification of 73/ 78 animals - 93.6%" "HSI, analysis, prediction and classification of muscle foods". Sun, D.W., et al (Review)

> Tenderness R² - 67- 95% WHC R² - 88% pH R² - 73%

However, no validation listed.

Jan 2017

Aug 2016

"EQ prediction of beef from Italian Simmental cattle based on experts' steak assessment". Borgogno, M. et al.

"Accuracy of predictive model was 96.6%"

Sept 2016

"CFD modelling of industrial cooling of large beef carcasess". Kuffi, K.D., et al.

"Excellent prediction in deep positions of the hind quarter"

Oct 2016

"Exploration of microwave dielectric and NIR spectroscopy... Fat content in ground beef". Downey, G., et al.

"Microwave R² prediction of 0.87 NIR R² prediction of 0.99"

What Next?

- Research can assess beef quality using well established methods.
- Industry requires fast on-line measurements.
- Options:
 - Eating Quality Grading Systems
 - Prediction technologies
- Current solutions not perfect but
 - EQ grading systems under consideration across Europe
 - On-line technology shows potential

