

Monitoring Aphid Virus Vectors in Potato crops

Stephen Jess Plant health & Biodiversity

www.afbini.gov.uk

Summary

- Aphids-Pest status in seed potatoes
- Direct/Indirect damage
- Virus vectors
- Virus transmission
- Monitoring
- Local experience

Agri-Food and Biosciences Institute Northern Ireland

Initiated 1976

• Contributed to RIS until 1986

Location of suction traps in the UK

Aphids - Significant Pest Status

• Direct damage - Loss of plant sap, distortion, wilting, galling

Aphids - Significant Pest Status

Indirect damage - Worldwide, aphids transmit over
60% of all known plant virus diseases

Plant Virus Transmission by Aphids

Viruses classified by length of time infectivity is retained by the vector.

Persistent viruses Semi-persistent viruses Non-persistent viruses

Persistent Virus

Long Acquisition

Persistent Virus Long Acquisition Latent Period

Persistent Virus Long Acquisition Latent Period Long Inoculation

Persistent Virus Long Acquisition Latent Period Long Inoculation

> Infectivity persists in aphid for life

Non-persistent Virus Short Acquisition

Non-persistent Virus Short Acquisition Short Inoculation

Non-persistent Virus Short Acquisition Short Inoculation

Infectivity does not persist in aphid for long

Non-persistent Virus

Vector efficiency decreases with longer acquisition feeds (e.g. colonising species)

Non-persistent Virus

Vector efficiency decreases with longer acquisition feeds (e.g. colonising species)

Non-colonising species can be effective vectors of non-persistent viruses

Aphid Vectors in Potato Crops

Colonising Species: Peach potato aphid (Myzus persicae)

Potato aphid (Macrosiphum euphorbiae)

Bulb and potato aphid (Rhopalosiphoninus latysiphon)

Aphid monitoring using 12.2m suction trap

> Peach potato aphid (*Myzus persicae*)

Aphid monitoring using 12.2m suction trap

Potato aphid (*Macrosiphum euphorbiae*)

Aphid Vectors in Potato Crops Non-Colonising Species

Only non-persistent viruses may be transmitted! Leaf curling plum aphid (Brachycaudus helichrysi)

Relative vector efficiencies Virus PVY^N Peach potato aphid 14/25

Leaf curling plum aphid 4/25

Aphid monitoring using 12.2m suction trap

Non-persistent Viruses

Large numbers of a relatively inefficient vector present at a time when the crop is susceptible can be a MORE EFFECTOR than low numbers of a more efficient vector later in the season

Aphid monitoring and Control

Pilot Aphid Monitoring Scheme. How it works?

Water traps and sampling materials issued to farms sites.

Water traps set in potato crop at canopy height at farms sites.

Water trap contents collected weekly from farms sites.

Samples returned to AFBI laboratories by post or courier.

©Scheme similar to that developed by FERA, York

Transmission Indices for PVY

Species	Common Name	PVY Index
Myzus persicae	Peach-Potato Aphid	1.00
Acyrthosiphon pisum	Pea Aphid	0.70
Aphis nasturtii	Buckthorn-Potato Aphid	0.40
Rhopalosiphum padi	Bird Cherry-Oat Aphid	0.40
Metopolophium dirhodum	Rose-Grain Aphid	0.30
Brachycaudus helichrysi	Leaf-Curling Plum Aphid	0.21
Macrosiphum euphorbiae	Potato Aphid	0.20
Aulacorthum solani	Glasshouse and Potato Aphid	0.20
Myzus ascalonicus	Shallot Aphid	0.20
Myzus ornatus	Violet Aphid	0.20
Rhopalosiphoninus latysiphon	Bulb and Potato Aphid	0.20
Hyperomyzus lactucae	Currant-Sowthistle Aphid	0.16
Aphis fabae	Black-Bean Aphid	0.10
Brevicoryne brassicae	Cabbage Aphid	0.01
Sitobion avenae	Grain Aphid	0.01

Crop colonisers are highlighted.

Calculate Vector Pressure Index (VPI)

1. For each species multiply the number in the trap by the relative transmission efficiency* value

2. Add the results together for all species caught in the trap

3. Add this value to the previous week's cumulative vector pressure index

*Relative to Myzus persicae = 1.0

Results and Communications Regional Vector Pressure Indices notified to growers via AFBI website

Benefits

Financial Environmental

Informs the decision-making processes when considering the need for insecticide treatments. Some commercial growers have reported savings of £22 per hectare over two years by being able to **reduce the number of aphicide treatments**.

Risk assessment for spread of PVY in relation to time of haulm desiccation crop, thus maximising your yield without risking the virus health of the seed.

Provides growers with a full record of **Integrated Pest Management** methods and the potential risk of virus transmission.

Provides information on the potential quality of home saved seed, thus providing the opportunity to save the expense involved in buying-in classified seed potatoes.

Benefits Financial Environmental

A more rational use of insecticides may lead to:

Increased levels of natural predators and

• Reduced risk of aphid populations developing **insecticide resistance**.

Suction trap data in NI also used to predict aphid virus vectors in winter cereal crops

Sustainable Pest & Disease Control is Highly Dependent upon

MONITORING

