

# MEAT CONSUMPTION AND COLORECTAL CANCER –

## **MECHANISMS AND MITIGATION**

Stefaan De Smet, 1/2/2017, Workshop Sustainable Beef Quality for Europe, Milan





Laboratory of Animal Nutrition and Animal Product Quality

# STRENGTH OF THE EVIDENCES FOR CRC

|                                      | Red meat                                  |    |
|--------------------------------------|-------------------------------------------|----|
| Human data                           | Limited                                   |    |
| Animal data                          | Inadequate                                | 35 |
| Mechanistic and other<br>data Hazard | analysis, not re<br>Strong                |    |
| Overall evaluation                   | Group 2A: probably carcinogenic to humans |    |



Bouvard et al (2015) The Lancet Oncology 16: 1599-1600



### **Processed meat**

# Sufficient sessment! Inadequate

### Moderate

### Group 1: carcinogenic to humans

**International Agency Research on Cancer** 



# HOW COULD RED AND PROCESSED MEAT CAUSE CRC?

Many factors involved, hard to separate

Probably not a single factor

Factors in meat and/or during digestion

Roasting, grilling, pan-frying, boiling ...









### Salt, nitrite/nitrate curing, fat, cooking, drying, smoking ...

# MECHANISMS FOR THE LINK RED/PROCESSED MEAT ~ CRC



**GENT** 

Demeyer et al (2015) Critical Reviews in Food Science and Nutrition 56: 1-20 Hammerling et al (2015) Critical Reviews in Food Science and Nutrition, doi: 10.1080/10408398.2014.972498

## May contribute

- Heterocyclic aromatic amines
- **Polycyclic aromatic hydrocarbons** 
  - Fat Protein

## More research needed

- Salt, nitrite
- N-glycolylneuraminic acid
- Interaction with other foods and lifestyle factors



Bastide et al (2011) Cancer Prev Res 4: 177-184

## HUMAN INTERVENTION STUDIES ON HIGH RED MEAT INTAKE ~ **DNA ADDUCT FORMATION**



Le Leu et al (2015) Brit J Nutr 114: 220

# DNA adducts putatively derived from NOC

Lewin et al (2006) Cancer Research 66: 1859



Bastide et al (2011) Cancer Prev Res 4: 177-184

# CALCIUM AND A-TOCOPHEROL PROTECT



meat 160 g/d for 4 days.

cured-meat promotion of volunteers.



DCNO = dark cooked meat with nitrite, oxidized.



- Cross-over study in 18 human volunteers given a model cured
- Calcium & tocopherol suppress
- carcinogenesis in rats and reduce
- associated biomarkers in human

Pierre et al (2013) Am J Clin Nutr 98: 1255

# **RED MEAT + ANTIOXIDANTS IN VITRO DIGESTION**





Some antioxidants are very effective.

Van Hecke et al (2016) J Agric Food Chem doi: 10.1021/acs.jafc.5b05915

# **RED MEAT + ANTIOXIDANTS IN VITRO DIGESTION**





... but not all, on the contrary !

Van Hecke et al (2016) J Agric Food Chem doi: 10.1021/acs.jafc.5b05915

## HETEROCYCLIC **AROMATIC AMINES (HCA)**

E.g.



PhIP: 2-Amino-1-methyl-6phenylimidazo(4,5-b)pyridine

smoking









## **POLYCYCLIC AROMATIC HYDROCARBONS (PAH)**



BaP: Benzo[a]pyrene

### direct flame





Skibsted (2011) Nitric Oxide 24: 176

NO formed by nitrite during meat curing can participate in numerous reactions modifying proteins and pigments.



- Residual concentrations in
  - processed meats low.
- No evidence for carcinogenic effect, even rather a nutrient.
- Antioxidant properties.
- Presence in a meat diet
  - seems to increase
  - endogenous NOC formation.
- Reacts also with lipids.



• Widely used in curing salt

(NaCl containing 0.6% NaNO<sub>2</sub>).

Bedale et al (2016) Meat Science 120: 85

# MITIGATION OPTIONS - OVERVIEW

### Processing

- $\checkmark$  Prevent oxidation (e.g.  $\alpha$ -tocopherol, polyphenols).
- Nitrite alternatives and Zn-Protoporphyrin.
- Meal preparation
  - Appropriate cooking practices to reduce HCA and PAH.
  - $\checkmark$  Addition of spices to meat to reduce HCA.
- Meal composition ullet
  - $\checkmark$  Consumption of cruciferous vegetables, yogurt, chlorophyl, wine or coffee, calcium supplements or  $\alpha$ -tocopherol to meat diets.
  - $\checkmark$  Alleviating effect of resistant starch.







Demeyer et al (2015) Critical Reviews in Food Science and Nutrition 56: 1-20.

# FOCUS ON DIETS AND LIFESTYLES RATHER THAN ON SINGLE FOODS?

### **Research Article**

### Heme Iron Intake, <u>Dietary Antioxidant Capacity</u>, and Risk of Colorectal Adenomas in a Large Cohort Study of French Women

Nadia Bastide<sup>1,2</sup>, Sophie Morois<sup>1,2</sup>, Claire Cadeau<sup>1,2</sup>, Suvi Kangas<sup>1,2</sup>, Mauro Serafini<sup>3</sup>, Gaëlle Gusto<sup>1,2</sup>, Laure Dossus<sup>1,2</sup>, Fabrice H. Pierre<sup>4</sup>, Françoise Clavel-Chapelon<sup>1,2</sup>, and Marie-Christine Boutron-Ruault<sup>1,2</sup>

Conclusion: In this prospective cohort study, the association between heme iron and colorectal adenoma risk was found to depend on site, nitrosylation or not, and the ratio with the NEAC. Impact: These results emphasize the need for a global assessment of diet when considering nutritional prevention of colorectal carcinogenesis. *Cancer Epidemiol Biomarkers Prev; 25(4);* 1–8. ©2016 AACR.







# **DIETARY AND LIFESTYLE RECOMMENDATIONS?**



### **RECOMMENDATION 5**

### ANIMAL FOODS

Limit intake of red meat<sup>1</sup> and avoid processed meat<sup>2</sup>



### CANCERS OF THE COLON AND THE RECTUM

### INCREASES RISK

- Red meat<sup>34</sup>
- Processed meat<sup>45</sup>
- Alcoholic drinks (men)6
- **Body fatness**
- Abdominal fatness
- Adult attained height<sup>7</sup>
- Alcoholic drinks (women)6

# FINAL THOUGHTS

- High consumption of red and/or processed meat ~ small increase in risk for colorectal cancer.
- There are mitigation options.
- Meat consumed in moderate amounts fits well into

balanced diets.



# THANK YOU FOR YOUR ATTENTION



### Contact information:

Stefaan De Smet

Ghent University, Laboratory for Animal Nutrition and Animal Product Quality Tel.: ++32 9 264 90 03 - Email: stefaan.desmet@ugent.be

www.ugent.lanupro.be





# ADDITIONAL SLIDES



# IT IS NOT ONLY ABOUT COLORECTAL CANCER...

| Epidemiology                                  | Wall of colon<br>Wall of colon<br>Cancer |                                         |                                   |
|-----------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|
|                                               | Colorectal cancer                        | Cardiovascular<br>disease               | Diabetes<br>type II               |
| Relative risk per<br>100g red meat / day      | + 17%                                    | + 0%                                    | + 19%                             |
| Relative risk per<br>50g processed meat / day | + 18%                                    | + 42%                                   | + 51%                             |
| Meta-analyses                                 | Chan et al (2011)<br>N = 13 and 14       | Micha et al (2010, 2012)<br>N = 4 and 5 | Micha et al (2012)<br>N = 9 and 8 |
| <b><u>IIII</u></b><br>UNIVERSITEIT<br>GENT    |                                          |                                         |                                   |

# IN COMPARISON ...



330 mL soda / day



### + 20% RR Diabetes

Greenwood et al (2014) Brit J Nutr 112: 725-734



### One portion of fruit / day



## Heart disease

Dauchet et al (2006) J Nutr 136: 2588-2593





### 10-19 cigarettes / day



## + 276% RR Lung cancer

Gandini et al (2008) Int J Cancer 122: 155-164 REUTERS http://www.reuters.com/investigates/special-report/health-who-iarc/

. . .

. . .



WELL GRILLED: After assessing processed meat, the WHO's cancer agency ranked it in its top category of carcinogens. But the WHO also says that, in moderation, meat can be part of a healthy diet. REUTERS/Rick Wilking

### How the World Health Organization's cancer agency confuses consumers

By Kate Kelland Filed April 18, 2016, 7:40 a.m. GMT

Processed meat, such as bacon, ranks alongside plutonium as a carcinogen, according to an arm of the WHO. Here's how such assessments happen – and what they mean Richard Sullivan, a professor of cancer policy and global health at King's College London, says any confusion is due to a widespread misunderstanding of IARC's role.

"IARC is purely there to do the science. And the science is absolutely fine," he told Reuters. "But there is a disjunction between the pure science and the policy and public health messaging. That's where problems arise."

# HOW TO INTERPRET RELATIVE RISK VALUES?

### **GLOBAL CANCER OBSERVATORY** ŚĊÒ,

http://gco.iarc.fr/

**GENT** 

**UNIVERSITEIT** 

|               | Colorectal cancer,<br>both sexes, 2012   | Europe   |
|---------------|------------------------------------------|----------|
|               | Incidence cases                          | 447 136  |
|               | Cum. risk 0-75 y                         | 3.5 %    |
| per 100 g/d   | Deaths                                   | 214 866  |
| + 17% RR      | Cum. risk 0-75 y                         | 1.4 %    |
|               | Incidence risk                           | 4.1 %    |
| Consumption ↑ | $\rightarrow$ Not relevant at individual |          |
|               |                                          |          |
|               | New cases / v                            | - 65 000 |





 $\rightarrow$  Relevant at population level







## COMPLEX INTERPLAY WITH INFLAMMATION AND GUT MICROBIOTA



Johan Gagnière, Jennifer Raisch, Julie Veziant, Nicolas Barnich, Richard Bonnet, Emmanuel Buc, Marie-Agnès Bringer, Denis Pezet, Mathilde Bonnet

- Dietary heme alters microbiota and mucosa of mouse colon ...
- ljssennagger et al (2012) PLOS ONE, 7:e49868
- Dietary heme induces acute oxidative stress ... in mouse colon
- Ijssennagger et al (2013) Carcinogenesis 34: 1628
- Gut microbiota facilitates dietary hemeinduced epithelial hyperproliferation by opening the mucus barrier in colon
- Ijssennagger et al (2015) P Natl Acad Sci USA 112:10038