Managing Phosphorus surpluses

The phosphorus problems in the Dutch dairy sector

March 28, 2017 Theun Vellinga

With help from: Joan Reijs, Michel de Haan, Jan Dijkstra, Jantine van Middelkoop, Ferry Leenstra

Overview

- Dairy in an urbanized and livestock dense country
- Phosphate balance the Netherlands
- Phosphate policy
- Mitigating P surpluses at farm level
 - Fertilisation
 - Manure processing and export
 - Animal nutrition
- P amongst other environmental issues

People, animals and land

(millions)	Northern Ireland	Nether- lands	Ratio
Cattle	1.6	4.2	2.5
Sheep	2.0	0.9	0.5
Pigs	0.5	12.4	25
Poultry	20.4	105.0	5
Grassland	.8	1.0	1.25
Maize		.23	
Arable	.01	.5	
Population	1.9	17	9
Total area	1.4	4.2	3

94 kTon Stays in NL 38%

Destination of phosphate surplus	kTon P2O5
Accumulation agricultural soils	27
Losses to water	15
Loss to inert materials (concrete, underlayment)	52

Loss to inert materials: the human P cycle

Source: Smit et al., (2010)

Phosphate surpluses on agricultural land

P2O5 surplus /ha/year in the 20th and 21st century:

Decade	P2O5 surplus/ha/yr
1910, 1920	25
1950	40
1980	78
2008	40
2015	0 - 20

Total about 4500 kg P2O5 per ha in the last 100 years

Source: Reijs et al., (2016)

Policy

1984

Production rights

• Limited animal numbers of pigs and poultry

1984

- Milk quota • Limits to milk production

1987

Fertiliser act (manure production rights)

1987

Closed period for manure application

1990

Soil Protection Act

• Decree on Use of Fertiliser

1991

EU Nitrates Directive (Ground water monitoring network)

• Maximum application rate 170 kg N/ha/year

1993-2006

Mineral Accounting System at farm level

• Penalty for plant nutrient losses

2000

EU Water Framework Directive

• Surface water quality

2006

Application standards system for minerals

2007

Low emission housing of animals in newly-built structures

2014 Mandatory manure processing

2015

2015

National conditions for dairy sector growth within the EU water framework directive

Phosphate policy essential in Nitrogen action plans: condition for derogation

- Maximum excretion level: 172.9 mln kg P2O5 per year Excretion level livestock sector in 2002
- Dairy sector: 84.9 mln kg per year
- Monitoring via Excretion standards, based on:
 - •animal numbers (national statistics),
 - P contents all feed types (service labs, feed industry)
 - Standardised rations (FADN)
- No exchange between sectors

N and P excretion defaults 2017

Milk production	N excretion (Milk Urea =22)	P excretion per cow
6000	98	34.8
7000	106	37.7
8000	115	40.6
9000	124	43.5
10000	132	46.4

Dairy herd (mln kg)
Phosphate excretion max level
Phosphate utilization

 Other animals (mln kg)
Phosphate excretion max level Total (mln kg)

Phosphate quota exceeded in dairy

2010: exceeding about by 1 mln kg

 Compound feed agreement, (private sector): maximum P content defined, escape via P/CP ratio

2015: quota abolishment, exceeding by 8 mln kg

- Increase in animal numbers
- Fluctuations in P contents feed
- P-feed agreement (private sector, no public policy) appeared not to be enough
- Sector not able to manage growth

Additional phosphate policy

- Governmental phosphate quota plan in 2016 regarded as support to private sector
- Alternative plan: government & private sector

Activity	P2O5 reduction (mln kg)
Stricter feed agreement (private; if fails, public)	1.7
Buy out (M€ 50, NL+EU 50%, sector 50%)	2.5
Reduction animal numbers P excretion > P application standard: 2/7/2015 – 4% P excretion < P application standard: 2/7/2015 Bonus/malus system	4.0

Impact on farm level

- If N,P > application standards: manure export from farm
- The largest exceedance defines manure export
- N, P excretion based on defaults/standards
- Annual Nutrient Cycling Assessment (ANCA) as a tool to calculate farm specific excretion of N and P
 - Centralized data collection
 - Enforcement by all sector organisations
 - Accepted by the Ministry of Economic Affairs
 - Extension to GHG

Application standards phosphate 2017, aiming at P-surplus = 0

P status	Grass land	Arable land
Low (PAI-<27, Pw<36)	100	75
Medium (Pal 27-50;Pw 36-55)	90	60
High (Pal>50; Pw>55)	80	50

P surplus and yields 1998 - 2014

No P application at all (mining): strong decrease in DM yields

Source VanMiddelkoop et al., 2016

P content grass silages 1996 - 2016

Source: Veeteelt, November 2016

P utilization in dairy production (including young stock)

N and P excretion defaults

Milk production	N excretion (Milk Urea =22)	P excretion per cow	Milk /kg P Herd level
6000	98	34.8	123
7000	106	37.7	132
8000	115	40.6	141
9000	124	43.5	148
10000	132	46.4	154

Pilot group of farmers on sandy soils

Farmers	kg milk/kg P2O5
Α	164
В	178
С	198
D	185
E	187
F	232
G	170
Н	200
Ι	204
J	175
Average	190
Range FADN	105 - 200

Steering P in feeding

- Grass silage: hard to manage, although decreasing P contents
- Maize silage: P content is low
- Compound feeds:
 - Pmax = 4.3 g/kg or
 - P/CPmax = 2.2 (P can be max 2.2 % of CP content) Exception for protein rich compound feeds

Room for dairy production in NL ?

- Conditions:
 - Phosphate (84.9 Mkg)
 - Nitrogen (Nitrates Directive + derogation, 170/250)
 - NEC ammonia (2020: 122 Mkg)
 - GHG (Effort sharing, -36 %, little flexibility)
 - Grazing cattle
 - Animal welfare/longevity
 - Biodiversity: special position of meadow birds

Ammonia, NEC

- Dierlijke mest, melk- en fokvee
- Kunstmest totaal
- ■Niet landbouw

Dierlijke mest, overige diersoorten
Overig landbouw

Room for dairy in NL?

- Close to every constraint (P, N, NH3, GHG)
- Derogation desperately needed
- Future GHG reduction is a challenge
- Conflicting interests, the dairy sector is losing it's good name:
 - Decrease in grazing
 - Biodiversity at risk
 - Landscape destruction
- Climate change adaptation: challenges and opportunities
- A debate is needed about the long term future of dairy, volume is part of the debate

Thank you for your attention

