

Potential of precision technology to improve grass growth and utilisation

Dr Debbie McConnell

www.afbini.gov.uk

Precision technology - a changing world

- Emergence of a data-sharing world:
 - 700% growth in internet data between 2012 and 2020
 - By 2050 there will be 6.6 devices per capita

Number of connected devices worldwide from 2012 to 2020 (in billions)

Source: CISCO, 2016

Precision technology in agriculture

- Ability to understand complex biological systems - perfectly suited to agriculture
- + Efficient use of resources:
 - + Labour
 - + Feeding
 - + Nutrient management
- + Management of individual units:
 - + Field
 - + Animal

- Grassland agriculture will be pivotal to ensuring sustainable N.I. dairy, beef and sheep industries
 - Significant volatility in price and availability of imported feedstuffs
 - Environmental and social concerns

Significant financial benefit to improving grass growth and utilisation

+£204/ha

(Mayne and Bailey, 2016)

Challenges:

1. Improve chemical and physical structure of grassland soils

Challenges:

- 1. Improve chemical and physical structure of grassland soils
- 2. Increase quantity and quality of grass grown

Estimated grass utilisation on NI farms (Mayne and Bailey, 2016)

Challenges:

- Improve chemical and physical structure of grassland soils
- 2. Increase quantity and quality of grass grown
- 3. Improve milk production from forage

Opportunities for new technologies

AFBI Precision Grassland Platform

 High-tech research platform which enables the collection of detailed information on soil, plant and animals

Wide variation in grass growth within and between fields

	DM yield t/ha	
	Mean	Range
First cut silage	3.7	1.1 - 6.3
Second cut silage	4.1	2.3 - 5.4
Third cut silage	2.4	1.1 - 4.0
Total yield	10.2	6.8 - 13.2

(SRUC, 2013)

Identify underlying causes of variation in grassland productivity

Identify underlying causes of variation in grassland productivity

Traffic Movement	Annual silage production (t DM/ha)
Random	11.29
Controlled	12.15
	+0.86
	(SRUC, 2013)

New technologies in grass management

- Weekly grass growth and quality monitoring at:
 - AFBI Hillsborough
 - Greenmount campus
- 7 and 14 day grass growth rate forecasts using GrazeGro model
- Strong correlations between forecast and actual growth

2016 GrassCheck grass growth curve

GrassCheck 2017: Using precision data to identify grass growth potential of NI livestock farms

 New technologies provide opportunity to obtain more detailed grass measurement information

GrassCheck 2017: Using precision data to identify grass growth potential of NI livestock farms

- Providing information more localised to regions across the Province
 - Weekly data:
 - Grass growth
 - Grass quality
 - Latest weather
- agrisearch.org/grasscheck

New technologies in grass management

- Limited regular grassland measurement activity undertaken on N.I. farms
- New technologies offer scope to assess grass yield and pasture quality:
 - Reduce time requirement
 - More detailed data

Significant opportunities for agriculture to build on technology developments in other industries

(Bewley, 2016)

- Developments in technology allowing animal measurement at pasture not just indoors
- Collection of real-time data remains a challenge but is improving

Animal positioning

- Understanding and manipulating animal grazing behaviour key to driving grass utilisation
- Positioning being used for a range of applications:
 - Productivity of pasture
 - Animal herding
 - Manipulating pasture intake

Average paddock 'sheep yield "26kg/ha/v

Data integration

- Farms are becoming huge repositories of data
- True value of PT is bring this data together
- Can we combine data to better manage cows at pasture:
 - Pasture yield and quality
 - Grazing behaviour e.g. Rumination/positioning
 - Milk yield and quality
- Potential opportunities to move towards measurement of individual DMI and targeted supplementation strategies

Summary

- Technology development is moving rapidly across all industries and agriculture will benefit from this through development of on-farm technologies and the ability to better understand complex biological situations
 - There are huge opportunities to drive grass productivity and utilisation across N.I. and there are many technologies currently being developed which will help contribute to this improvement.

AFBI SCIENCE IS SHAPING LIVESTOCK FARMING FOR 2030

www.afbini.gov.uk