

# Evaluating the impact of a range of organic manures applied to arable land



P.Cottney; S. Higgins; N. Corchionivoschi; L. Black

**Scope:** Investigate the effect of long-term slurry applications on soil health, nutrient cycling, pathogen loading and fertiliser replacement value over three trial years

## **Materials and Methods**

- Duration: 3 years
- ➢ 64 experimental plots 19m x 6m
- Co Down, Northern Ireland (Photo)
- Continuous spring barley
- 12 different amendments

| Table 1. Organic materials, rates and incorporation method |      |                  |
|------------------------------------------------------------|------|------------------|
|                                                            |      |                  |
| Biochar                                                    | 3.3  | Ploughed in      |
| Broiler Litter Pellets                                     | 6.3  | Ploughed in      |
| Cattle FYM                                                 | 21   | Ploughed in      |
| Cattle Slurry                                              | 50   | Ploughed in      |
| Brown Bin Compost                                          | 35   | Ploughed in      |
| Green Waste Compost                                        | 18   | Ploughed in      |
| Digestate Untreated                                        | 34   | Ploughed in      |
| Digestate Untreated                                        | 34   | Non-incorporated |
| Digestate Fibre                                            | 21   | Ploughed in      |
| Layer Manure                                               | 21   | Ploughed in      |
| Pig Slurry                                                 | 50   | Ploughed in      |
| Plasma Treated Digestate                                   | 31   | Ploughed in      |
| Plasma Treated Digestate                                   | 31   | Non-incorporated |
| Struvite                                                   | 0.36 | Ploughed in      |
| Fertiliser Control                                         | -    | Non-incorporated |
| Control Unfertilised                                       | -    | —                |

### Results

 Soil Biology: No significant effects
Soil Chemistry: Significant impact on soil phosphorous, potassium, pH and sulphur

Soil Structure: No significant effects
Yield: See graph

Soil potassium levels following the various treatments (mg/l) (ammonium nitrate extract)





Line at 136 mg/l is shown to indicate the effect of treatment compared to untreated control

Error bars indicate standard error of the difference (SED)

\* indicates sgnificantly different to both control unfertilised and fertiliser control

+ indicates treatments significantly different (P<0.05) to the control unfertilised



Average standard error of the difference (SED) = 2.04Treatment significantly (P<0.001) impacted soil P wih significant (P<0.05) differences found between treatments \* Cattle slurry was significantly higher than that of the fertiliser control



#### Next steps:

- Measure Solvita respiration
- Calculate fertiliser replacement value
- Calculate nutrient efficiency
- Produce final report



www.daera-ni.gov.uk

#### DAERA E&I Project 18/1/21

