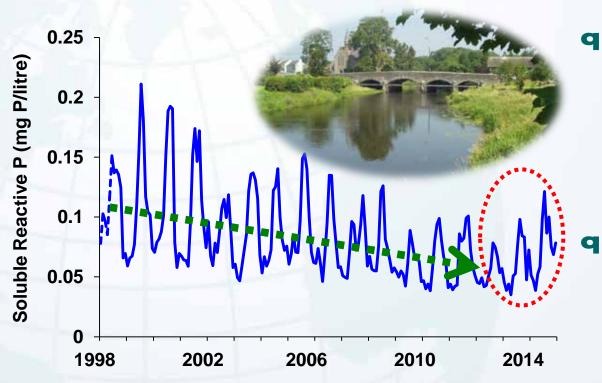


Agri-Food and Biosciences Institute

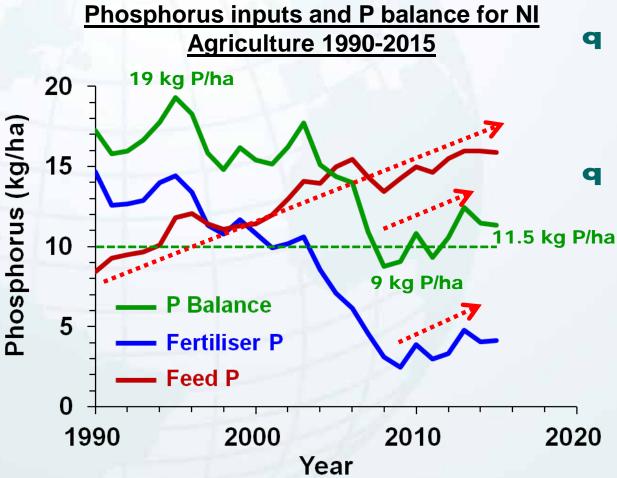
Producing & Utilizing Good Quality Grass & Forage Dr John Bailey

www.afbini.gov.uk

Presentation Outline

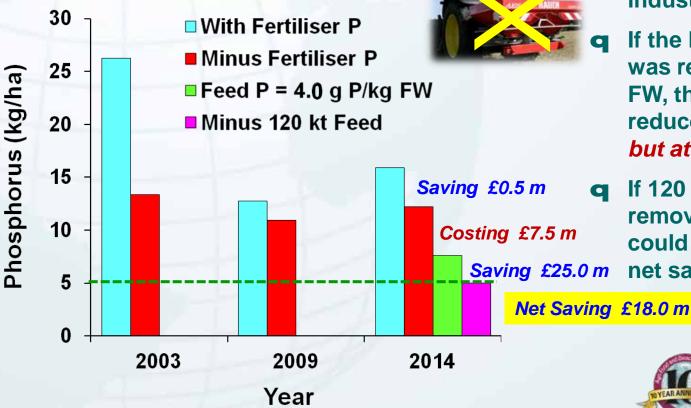

- 1. Setting the Scene
- 2. Factors hampering grass production and utilization
- 3. Factors impairing grass quality and inflating production costs
- 4. Using quality grass & forage to sustainably improve dairy farm profitability
- 5. Summary

Soluble Reactive Phosphorus in 127 Rivers (NIEA)


- **q** The European Commission could insist on new measures to tackle this problem such as:
 - **Ø** Extending the 'Closed-Period' for slurry application
 - **Ø** Banning slurry application to high P soils (Lu, FI, Ge, Ne)
 - Ø Imposing a Zero P balance on all farms (Lu, Bt, NC)

Until the last 3 years, phosphorus (P) concentrations in NI rivers had been declining - making it easier to justify no further 'tightening' of our Nitrates Action Programme

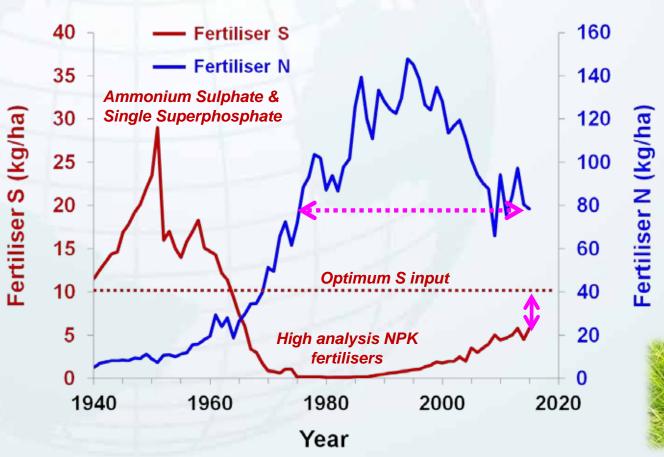
In the past 3 years, however, P levels appear to have been rising again, which is a MAJOR CONCERN!!


q Between 1990 and 2009, there was an 80% reduction in fertiliser P inputs to NI Agriculture - halving the NI P Balance over this period, i.e. from 19 kg P/ha in 1992, to just 9 kg P/ha in 2009

- **q** In the last 6 years, however, fertiliser P usage has begun to increase again
 - This increase, together with the continuous increase in concentrate feed P usage over the past 25 years, has caused the NI P Balance to rise again above 10 kg P/ha/yr

- **q** Of the land-based farming sectors, the dairy sector has the highest P balance or surplus
- **q** While it declined appreciably between 2003 and 2009, it remains 3 times higher than the optimum of 5 kg P/ha/yr

- **q** Elimination of fertiliser P would reduce the P balance and save the industry £0.5 m/yr
 - If the P content of feeds was reduced to 4.0 g P/kg FW, this would further reduce the P balance, but at a cost of £7.5 m/yr
- **q** If 120 kt of feed was also removed the P balance could be optimised with a
 m net saving of £18 m/yr



- **q** The key to improving profitability and minimising P usage, is to produce and feed more high quality grass and forage to animals and thus minimise costly concentrate usage
- **q** Farmers therefore need to tackle the factors that are currently hampering grass and forage production and utilisation

2. Factors hampering grass production and utilization

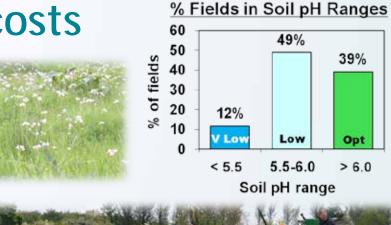
- **q** The No 1 factor hampering grass production in NI is under-use of fertiliser N - and the No 2 factor is underuse of fertiliser sulphur (S)
- **q** Fertiliser N usage is currently at a 40 year low, and inputs of fertiliser S are only about 1/2 what is needed to optimise grass yield and true protein content

- More than 50% of silages analysed each year are
 N deficient with sub-optimal crude protein contents
- q 30 40% of first cut silage swards and early grazed swards are also
 S deficient

Acutely S deficient

2. Factors hampering grass production and utilization **q** The No 3 factor hampering grass

New phosphate recommendations for grassland at soil P index 2-


	Soil Olsen-P Index				
Сгор	0	1	2-	2+	3
	(kg P2O5/ha)				
Grass estab'	120	80	65	50	30
1 st Silage	100	70	55	40	20
Нау	80	55	43	30	0
Grazing	80	50	35	20	0

- The No 3 factor hampering grass production is potassium (K) deficiency – largely because of inadequate recycling of manure K to fields remote to farmyards - affecting up to 15% of 2nd and 3rd cut crops
- The No 4 (and less important) factor affecting grass production is
 P deficiency – again largely due to inadequate recycling of manure P
- **q** AFBI research demonstrated that RB209 P recommendations are inadequate when soil P is at the lower end of Index 2 (16-20 mg P/I)
- **q** Accordingly, the soil P index 2 range has been split into 2- (16-20 mg P/I) and 2+ (21-25 mg P/I) with higher P recommendations at index 2-

3. Factors impairing grass quality and inflating production costs

- **q** <u>Inadequate liming</u> resulting in sward deterioration - with indigenous species of low digestibility invading pastures and replacing quality species such as perennial ryegrass and clover
- **q** <u>Inadequate reseeding</u> with new high performing grass varieties to enhance forage quality and reduce the need for costly concentrate feeds
- **q** <u>Unnecessary use of NPK fertilisers</u> owing to lack of soil testing and poor distribution/recycling of manures adding up to £35/ha to production costs
- **q** Shorter cutting intervals required to improve grass energy and protein contents – a more cost-effective strategy than allowing swards to 'bulk up' to minimise contractor costs per tonne

4. Using quality grass & forage to sustainably improve dairy farm profitability

Case Study: Current v Improved Quality Grass System

 q 600 kg dairy cow producing 7,500 l m q Stocking rate: 1.77 cows/ha q Grazing 205 d; Confinement 160 d 	0	<i>creasing forage</i> Quality t/ha extra Grass/	
System Variables		forage DM utilisation	
Grass or silage intake per head (t DM/yr)	4.05	4.55	
ME content of grass (MJ/kg DM)	11.2> 12.0		
ME content of silage (MJ/kg DM)	10.7 •••••• 11.5		
Concentrates required per head (t DM/yr)	2.09		
Milk yield per head (litres/yr)	7,700 ····· ▶ 7,500 Reduced		
Milk yield (litres/ha/yr)	13,600 ····· → 12,600 milk yield		
Milk P export (kg P/ha/yr)	12.9	12.0	
Concentrate required (t DM/ha/yr)	3.71	2.15	
Concentrate P input (kg P/ha/yr)	18.9 •••••• 11.0		
		With Fert P Minus Fert P	
Whole Farm P Balance (kg P/ha/yr)	15.3	• > 8.3 •••> 5.3	
	TO YEAR ANNIVER	affer Food and Biospences Instaute	

4. Using quality grass & forage to sustainably improve dairy farm profitability

Cost-Benefit Analysis - Of Moving to the Improved System

	Savings / Losses		
Milk yield reduced by 1,000 litres/ha/yr	£180/ha/yr		
Concentrate use reduced by 1.56 t DM/ha/yr	£312/ha/yr		
Additional costs for extra cut on ½ of silage area	£34/ha/yr (averaged over whole platform)		
Additional 25 kg fertiliser N/ha on ½ of silage area	£8/ha/yr (averaged over whole platform)		
Net saving by soil testing and manure distribution	£10/ha/yr (averaged over whole platform)		
NET SAVING	£100/ha/yr		

q This strategy has the potential to make dairy farms more profitable whilst simultaneously reducing their environmental impacts – i.e. making them more sustainable both economically and environmentally

5. Summary

- **q** Low milk prices and high overheads, including the cost of concentrate feeds, are currently threatening the viability of the NI dairy industry
- **q** There is a real risk that recent increases in P losses to water bodies could bring about additional economic pressures should the European Commission impose more stringent environmental controls e.g. an extension to the 'closed-period' for manure application
- **q** To be sustainable the dairy industry must simultaneously become more profitable and less P intensive
- **q** This dual goal can be achieved by increasing milk production from grass (*by increasing grass quality and grass utilisation*), reducing the amount of P-containing concentrates fed to dairy cows (*even if this does lower milk yield*) and eliminating the need for fertiliser-P, by soil testing and recycling manure-P to fields of low soil P status
- **q** This strategy has the potential to lower farm P balances to the optimum of 5 kg P/ha/yr, whilst simultaneously increasing farm profits by £100/ha/yr i.e., £10,000/yr on a 100 ha dairy farm

