

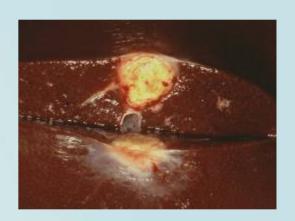
Caseous lymphadenitis (CLA) in sheep and goats

BVA Congress, Belfast

Frank Malone
Veterinary Sciences Division
Agri-Food and Biosciences Institute

CLA – presentation outline

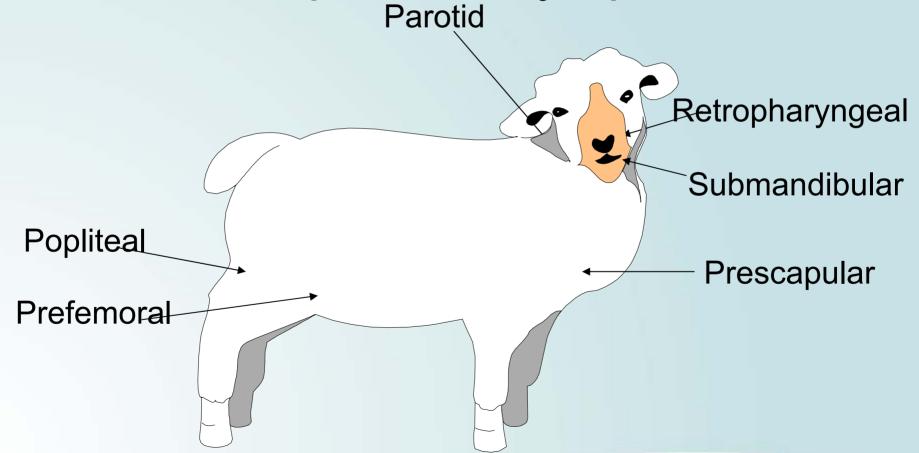
- Introducing CLA
- Control of disease
- Prevalence of disease
- Diagnosis
- Flock eradication by serology
- CLA study in 4 culled flocks


Caseous Lymphadenitis (CLA)

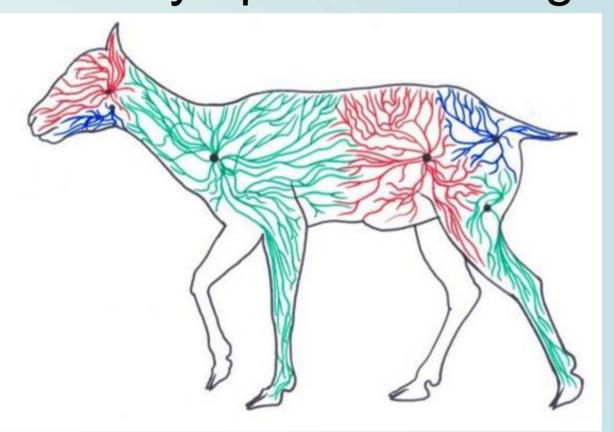
- Corynebacterium pseudotuberculosis
- First diagnosed in GB sheep in 1991 (goats 1990)
 - NI in 1999
 - Rol in 1998
- Mainly terminal sire breeds
- Prevalence in Britain may be as high as 18% of flocks
- Prevalence of > 25% within some affected flocks

CLA infection

- Infection enters through wounds
 - Abscesses in lymph nodes
 - Lung and viscera abscesses
- Spreads rapidly within flock
- Losses
 - Culling affected sheep
 - Affected parts of carcase condemned
 - downgrading of carcase
 - Trade implications
- Human infection uncommon


CLA in goats

- Natural infection similar to sheep
- Same biotype of C. pseudotuberculosis
- Clinical presentation
 - Superficial lymph nodes
 - Mainly head and neck
- Main route of infection
 - via oral cavity
 - Skin abrasions face and head
- Visceral lesions more common in sheep



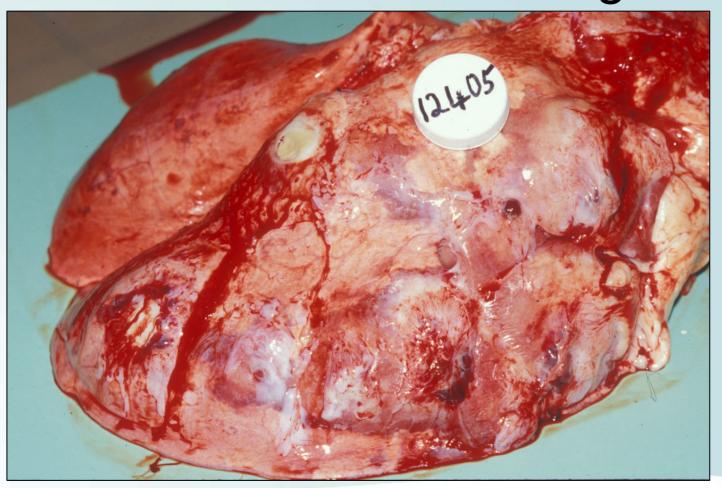
CLA in Superficial Lymph Nodes

CLA – lymphatic drainage

CLA in Parotid Lymph Node

CLA in Parotid Lymph Node

CLA in Parotid Lymph Node


CLA abscesses in LNs

CLA Abscesses in Lungs

Differential diagnosis

- Arcanobacterium pyogenes
- Actinobacillus lignieresi (cruels)
- Staphlococcal dermatitis

CLA

- problems with control

- Carrier animals
 - Incubation period up to four months
- Many cases only visceral lesions
- Organism survives long periods in environment
- Antibiotic treatment ineffective
- Definitive diagnosis only by culture

Preventing CLA

- Avoid introducing infected sheep
- New cases associated with the purchase or loan of infected sheep
- Examine sheep thoroughly before purchase
- SAC CLA monitoring scheme
- Consider a quarantine period
- Ensure high levels of biosecurity especially during visits by shearing contractors

Managing CLA

- Regular examination of the flock
 - every two to three months
- Separation of sheep showing suspicious lesions
- Cull affected sheep
- Alternatively operate a "clean" and "dirty" flock policy
- Attention to hygiene especially when dealing with pus discharge

Managing CLA

- At shearing time
 - Shear younger animals first, known infected animals last
 - Personal hygiene and disinfection of cutters and combs is important
 - Flock owners should ensure adequate washing facilities & provide disposable protective clothing
- Avoid dipping within 2 weeks of shearing

Managing CLA

- Spread of infection before weaning is low
 - rearing weaned lambs as an entirely separate group should maintain this status
 - this can then form the nucleus of a "cleaner" flock
 - possible to sell from such a group with some degree of assurance that infection is not being passed on to purchaser

Vaccination

- Early vaccines inactivated whole cell preparations
- Recent formalin-killed virulent UK isolate in alhydrogel
- Toxoid vaccines Phospholipase D (PLD) formalin inactivated
- Glanvac[™] Australian combined clostridial/CLA vaccine
- Offers significant protection in sheep and goats
 - not authorised for use in Britain or Ireland
- Moredun recombinant PLD vaccine

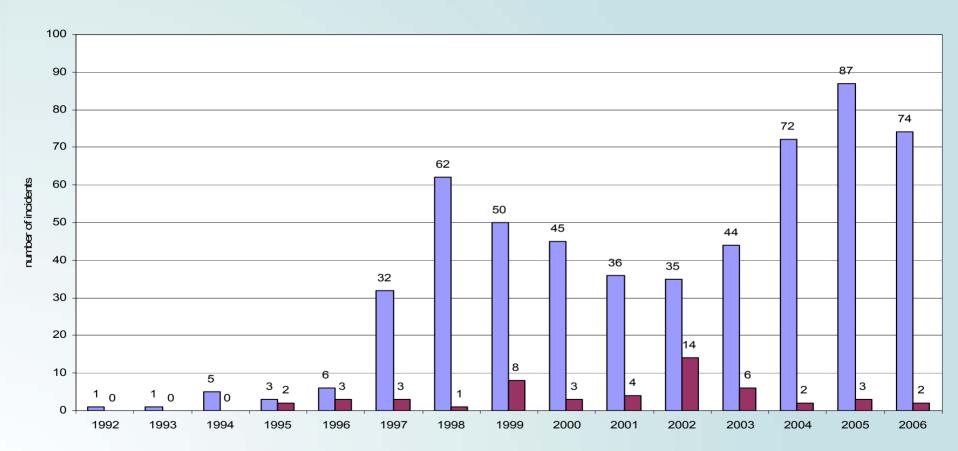
CLA in Europe

- Czech Republic
- France
- Germany
- Great Britain
- Netherlands
- Italy

- Ireland
- Norway
- Poland
- Portugal
- Romania
- Spain

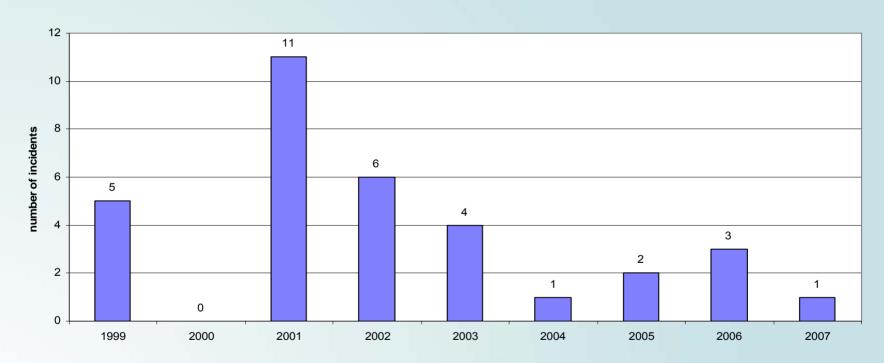
Global prevalence of CLA

- Worldwide distribution small ruminants
- Present in majority of sheep rearing countries
- Abattoir-based prevalence studies
 - Australia (>50% adult sheep in 1984
 - > 20% in 2002)
 - New Zealand (7.1% adult sheep in 1986-7)
 - Western USA (42.5% adult sheep in 1984)
 - Alberta, Canada (13% adult sheep in 1998)
 - Quebec, Canada (21-36% adult sheep in 2003)

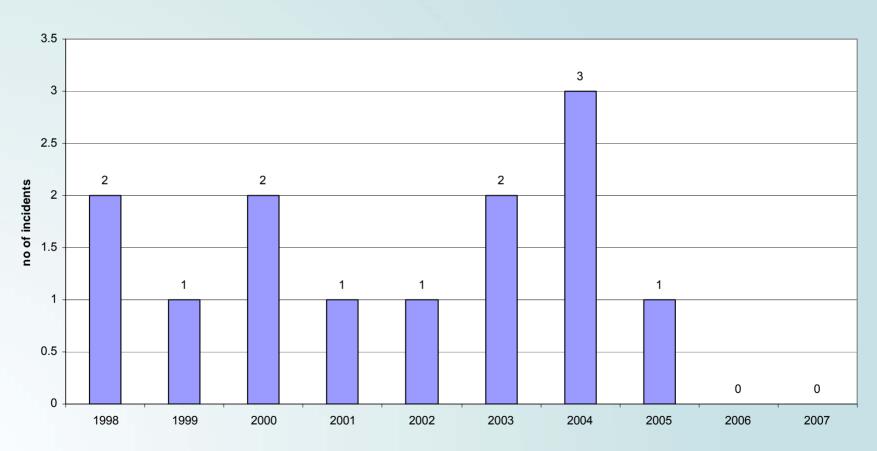


Prevalence of CLA in GB

- Serological survey in 2000
 - 2538 samples from rams in 745 flocks
 - 9.93% of sheep seropositive
 - 18% of flocks had one or more positive animals
- Postal survey in 2000
 - vets in Sheep Veterinary Society
 - 18% had diagnosed CLA
 - sheep farmers
 - 56% reported abscesses in sheep
 - 13% had CLA diagnosed



CLA incidents GB

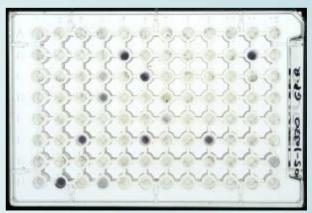


CLA incidents NI

CLA incidents in Rol

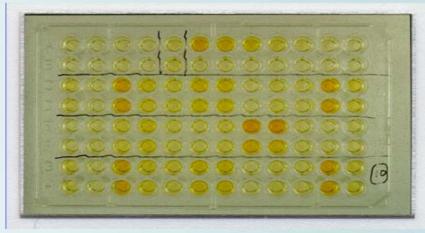
PFGE of isolates

- Biotypes (S+G; C+H)
- 49 UK C. pseudotuberculosis isolates tested by PFGE
- 43/46 sheep isolates and 2/3 goat P2.
 - single P3, P5, P6 isolates in sheep
 - single P4 isolate in goats
- All clonally related
- Goat isolates were from the original UK outbreak
- 2/2 equine isolates P1 (not clonally related)
- 42 global isolates Australia, Canada, Netherlands, NI and Rol.
 - sheep and goat isolates clonally related irrespective of country of origin



Culture

CLA in the Netherlands


- Sheep: 1978 first isolation in the Netherlands of C. pseudotuberculosis from a lung
- Goats: 1984 CLA described as clinical entity (imported with French goats)
- Indirect double antibody sandwich ELISA
 - Ter Laak et al. (1992)
- Plates coated with immunoglobulins from a rabbit hyperimmune serum raised against a crude exotoxin preparation of *C. pseudotuberculosis*
- Test and cull in NL goats

Eradication in goats - NL

Modified ELISA

	ELISA	ELISA	ELISA	ELISA
	Α	В	C	D
Goat				
Sensitivity (%)	72±5	94±3	61±3	56±6
Specificity (%)	99±1	98±1	86±3	97±1
Sheep				
Sensitivity (%)	51±6	79±5	75±5	59±6
Specificity (%)	97±2	99±1	69±4	92±3

Sensitivity = % animals with CLA with a positive test result

Specificity = % of CLA negative animals with a negative test result

CLA ELISA - Trial Flocks

- Total of six flocks chosen
 - Three in Scotland
 - Two in Northern Ireland
 - One in Northern England
- All 6 flocks had established CLA
 - Confirmed by bacterial culture

ELISA test for CLA

- Developed at the ID-DLO in Lelystad
- A refinement of the test used in Dutch goat CLA health scheme – ELISA B

- Lab trials in sheep established ELISA B
 - Sensitivity of 79% ± 5%
 - Specificity of 99% ± 1%

The Trial Flocks

- Visits at ~ 6-monthly intervals
 - Summer 1999
 - Clinical examination and blood sampling of all sheep
 6 months of age
- Isolation and bacteriological sampling of all animals with clinical signs of CLA
- Removal <u>or</u> effective separation of CLA-positive animals
 - Culture or antibody ELISA

The Trial Flocks

- Testing began in summer of 1999
 - effectively suspended for a year due to FMD outbreak
- Post-mortem examinations of both seronegative and seropositive animals
- One flock sold during first year of trial
- Second flock-owner failed to remove sheep testing positive
 - Incidence of CLA increased in this flock

The Trial Flocks - Results

- 4 flocks
 - Considerable reduction in disease
- ELISA blood test
 - All 4 flocks negative for CLA
- Clinical examination
 - No new cases in last 6 months of trial

Results

Flock	Initial seroprevalence	Final seroprevalence
А	13%	0%
В	63%	0%
С	29%	67%
D	8%	0%
E	5%*	2%
F	0%**	0%

^{*} Flock withdrawn from trial after six months

^{**} Second flock test at 9% seroprevalence

Results

Flock	Initial	Final	
	seroprevalence	seroprevalence	
Α	13%	0%	
В	63%	0%	
С	29%	67%	
D	8%	0%	
E	5%*	2%	
F	0%**	0%	

^{*} Flock withdrawn from trial after six months

^{**} Second flock test at 9% seroprevalence

Results

Flock	Initial seroprevalence	Final seroprevalence		
А	13%	0%		
В	63%	0%		
С	29%	67%		
D	8%	0%		
E	5%*	2%		
F	0%**	0%		

Flock B results

- July 1999
 - 68/108 animals were ELISA positive
 - 30/108 animals clinical signs of CLA
- Flock divided into "infected" and "non-infected" parts on basis of test
- Only one further case of clinical disease within "noninfected" part of flock
- March 2002
 - No new seropositive animals detected in "noninfected" group

Conclusions

- "Test & cull" policy can dramatically reduce flock CLA
 - Changes in management practice
- Incidence of new clinical cases is very low within ELISAnegative group
- ELISA test for CLA may be of use in controlling and/or eradicating disease

Post-mortem and serological examinations of sheep in four flocks affected with caseous lymphadenitis

4 flocks - A

- July 2001 104 sheep 3 groups
 - 4 stock rams, 62 ewes & 38 lambs
- 25 sheep slaughtered as clinical CLA
 - CLA confirmed in 9 ewes, 4 rams & ram lamb
 - 6 ewes lung lesions, one ewe ~30 abscesses both lungs, abscesses mediastinal & prescapular LN
- remaining ewes purchased
- source of infection
 - 2 rams imported from Scotland in August 2000

4 flocks - B

- June 2001 148 sheep 5 groups
 - 2 stock rams, 88 ewes, 25 shearlings, 18 ewe
 lambs & 15 ram lambs
- 49 sheep slaughtered as clinical CLA
 - CLA confirmed at PME
 - extensive lesions 35 carcases condemned
- remainder of flock purchased
- source of infection
 - ram from flock A in late October 2000

4 flocks - C

- August 2001 101 sheep in 6 groups
 - groups had mixed
- CLA confirmed at PME in 21/28 suspect ewes
 - 7 lung lesions
- rest of flock purchased in batches
- source of infection
 - ewe purchased November 1999
 - from same flock in Scotland as flock A

4 flocks - D

- August 2001 75 sheep in groups
 - groups not mixed
- 3 ewes clinically suspect CLA
 - these 3 + 2 others in group positive at PME
- Further 6 ewes positive CLA at PME
- Remainder of flock clinically negative until de-restricted in March 2002
- Source of infection
 - 5 ewes from flock A in December 2000

CLA ELISA

- Dercksen and others (2000)
 - false negatives in sheep flocks
 - modified ELISA B
- ELISA evaluated in:
 - healthy sheep from CLA-free flocks
 - sheep with culture confirmed CLA abscesses
 - specificity 99 \pm 1%, sensitivity 79 \pm 5%
- present study evaluates ELISA within 4 affected flocks

4 affected flocks

- 329 sheep (63 male, 266 female)
 - A (n=98), B (n=95), C (n=100), D (n=36)
 - blood sampled for ELISA
 - subsequently examined post mortem
- 133 sheep
 - CLA lesions at post-mortem examination
 - confirmed on culture
- 196 sheep
 - CLA not confirmed post mortem

ELISA sensitivity and specificity

		ELISA			
CLA lesion	Positive	Negative	Total	Sensitivity	0.88
Positive	117	16	133	Specificity	0.55
Negative	88	108	196		
Total	205	124	329		

CLA lesions

- 133 sheep
 - CLA-confirmed lesions
- lungs 46 (35%)
- parotid LN 44 (33%)
- prescapular LN 38 (29%)
 mediastinal LN 30 (23%)
- retropharyngeal LN 11 (8%)

CLA lesions

- 133 sheep
 - CLA-confirmed lesions
- prefemoral LN 10 (8%)
- bronchial LN 9 (7%)
- submandibular LN- 8 (6%)
- liver 5 (4%)
- mesenteric LN 4 (3%)
- mammary LN 4 (3%)
- other sites 11 (8%)

CLA lesions

- CLA lesions (133 sheep)
 - multiple sites
- Superficial LN or
 S/C lesions only 69
- Internal lesions (lungs and visceral LN) only – 32
 - 28 ELISA-positive
- Visceral lesions in ~ 24%

Conclusions

- Visceral lesions only approx 24% of cases
 - clinical exam will not remove all CLA cases
 - ELISA detects non-apparent cases
- ELISA high sensitivity (0.88), low specificity (0.55)
 - low specificity
 - infected sheep eliminating disease no lesions

Conclusions

High number of respiratory tract lesions

- intensive husbandry
- rapid spread of disease

Mathematical model of *C.* pseudotuberculosis in sheep

Model examined 3 possible routes of transmission

- Overt to overt
- II. Respiratory to overt
- III. Respiratory to respiratory

Dynamics of infection in flocks

- Using lesion and culling data from 4 flocks
 - Overt to overt most frequent route of transmission
- Initial epidemic of overt abscesses
 - followed by gradual increase in respiratory abscesses
- Approximately 25% of sheep with overt abscesses were predicted to develop respiratory abscesses

Acknowledgements:

- Graham Baird
- Daan Dereksen
- John Fagan
- David Harwood
- Phil Watson
- Jarosław Kaba
- Kath O'Reilly
- AFBI VSD staff